1	(i)	$1 - \frac{1 - x}{x}$			
		$ff(x) = f(\frac{1-x}{1+x}) = \frac{1 - \frac{1-x}{1+x}}{1 + \frac{1-x}{1+x}}$	M1	substituting $(1-x)/(1+x)$ for x in f(x)	
		$=\frac{1+x-1+x}{1+x+1-x} = \frac{2x}{2} = x^*$	A1	correctly simplified to x NB AG	
		$f^{-1}(x) = f(x) = (1-x)/(1+x)$	B1	or just $f^{-1}(x) = f(x)$	
			[3]		
	(ii)	$g(-x) = \frac{1 - (-x)^2}{1 + (-x)^2}$	M1	substituting $-x$ for x in $g(x)$ condone use of 'f' for g	if brackets are omitted or misplaced allow M1A0
		$=\frac{1-x^2}{1+x^2}=g(x)$	A1	must indicate that $g(-x) = g(x)$ somewhere	condone use of 'f' for g
		Graph is symmetrical about the <i>y</i> -axis.	B1	allow 'reflected', 'reflection' for symmetrical	must state axis (y-axis or $x = 0$)
			[3]		

2	(i)	At P, $(e^x - 2)^2 - 1 = 0$ $\Rightarrow e^x - 2 = [\pm]1,$ $e^x = [1 \text{ or}] 3$	M1	square rooting – condone no \pm	
		or $(e^x)^2 - 4e^x + 3 = 0$ $\Rightarrow (e^x - 1)(e^x - 3) = 0, e^x = 1 \text{ or } 3$	M1	expanding to correct quadratic and solve by factorising or using quadratic formula	condone e^x^2
		$\Rightarrow x = [0 \text{ or}] \ln 3$	A1 [2]	<i>x</i> -coordinate of P is ln 3; must be exact	condone P = ln 3, but not $y = \ln 3$
2	(ii)	$f'(x) = 2(e^x - 2)e^x$	M1	chain rule	e.g. 2 $u \times$ their deriv of e^x
			A1	correct derivative	$2(e^{x}-2)x$ is M0
		= 0 when $e^x = 2$, $x = \ln 2$ *	A1	not from wrong working NB AG	or verified by substitution
		or $f(x) = e^{2x} - 4e^x + 3$	M1	expanding to 3 term quadratic with $(e^x)^2$ or e^{2x}	condone e^x^2
		\Rightarrow f'(x) = 2e ^{2x} - 4e ^x	A1	correct derivative, not from wrong working	
		= 0 when $2e^{2x} = 4e^x$, $e^x = 2$, $x = \ln 2$ *	A1	or $2e^{x}(e^{x}-2) = 0 \Rightarrow e^{x} = 2, x = \ln 2$ not from wrong working NB AG	or verified by substitution
		$y = f(\ln(2)) = -1$	B1		
			[4]		

(Questio	n Answer	Marks	Guidance		
2	(iii)	ii) $\int_0^{\ln 3} [(e^x - 2)^2 - 1] dx = \int_0^{\ln 3} [(e^x)^2 - 4e^x + 4 - 1] dx$		expanding brackets must have 3 terms: $(e^x)^2 - 4$ is M0, condone e^x^2	or if $u = e^x$, $\int_1^3 [u^2 - 4u + 4 - 1]/u du$	
		$=\int_{0}^{\ln 3} [e^{2x} - 4e^{x} + 3] dx$	A1	$\int e^{2x} - 4e^x + 3 [dx] (\text{condone no } dx)$	$=\int u-4+3/u\mathrm{d} u$	
		$= \left[\frac{1}{2}e^{2x} - 4e^{x} + 3x\right]_{0}^{\ln 3}$	B1 A1ft	$\int e^{2x} = \frac{1}{2} e^{2x}$ [\frac{1}{2} e^{2x} - 4e^{x} + 3x]	$= [\frac{1}{2}u^2 - 4u + 3\ln u]$	
		$= (4.5 - 12 + 3\ln 3) - (0.5 - 4)$ = 3ln3 - 4 [so area = 4 - 3ln3]	A1 [5]	condone 3ln3 – 4 as final ans; mark final ans		
2	(iv)			attempt to solve for y (might be indicated by expanding and then taking lns) condone no \pm must have interchanged x and y in final ans must be \geq and x (not y) or f ⁻¹ (x) \geq ln 2, must be \geq (not x or f(x)) if $x > -1$ and $y > \ln 2$ SCB1 recognisable attempt to reflect curve, or any part of curve, in $y = x$ good shape, cross on $y = x$ (if shown), correct domain and range indicated. [see extra sheet for examples]	or x if x and y not interchanged yet or adding (or subtracting) 1 if not specified, assume first ans is domain and second range y = x shown indicative but not essential e.g1 and ln 2 marked on axes	

3 (i) ⇒	bounds $-\pi + 1$, $\pi + 1$ $-\pi + 1 < f(x) < \pi + 1$	B1B1 B1cao [3]	or < y < or ($-\pi$ + 1, π + 1)	not < x <, not 'between'
(ii)	$y = 2\arctan x + 1 x \leftrightarrow y$ $x = 2\arctan y + 1$	M1	attempt to invert formula	one step is enough, i.e. $y - 1 = 2\arctan x$ or $x - 1 = 2\arctan y$
\Rightarrow	$\frac{x-1}{2} = \arctan y$	A1	or $\frac{y-1}{2} = \arctan x$	need not have interchanged x and y at this stage
\Rightarrow	$y = \tan(\frac{x-1}{2}) \implies f^{-1}(x) = \tan(\frac{x-1}{2})$	A1		allow $y = \dots$
		B1 B1 [5]	reasonable reflection in $y = x$ (1, 0) intercept indicated.	curves must cross on $y = x$ line if present (or close enough to imply intention) curves shouldn't touch or cross in the third quadrant

4	$gf(x) = e^{2\ln x}$	M1	Forming gf(<i>x</i>)	Doing fg: $2\ln(e^x) = 2x$ SC1
	$= e^{\ln x^2}$	M1	(soi)	Allow x^2 (but not 2x) unsupported
	$-r^2$	A1		
	- <i>x</i>	[3]		

5 ⇒	f(-x) = -f(x), g(-x) = g(x) g f(-x) = g [-f (x)] = g f (x) g f is even	B1B1 M1 E1 [4]	condone f and g interchanged forming $gf(-x)$ or $gf(x)$ and using f(-x) = -f(x) www	
--------	---	-------------------------	---	--

$6 \qquad f(x) = 1 + 2 \sin x$ $x = 1 + 2 \sin 3y$ $\Rightarrow \qquad \sin 3y = (x - 1)$ $\Rightarrow \qquad 3y = \arcsin [(x - 1)]$	M1 /2 -1)/2] M1 A1 A1	attempt to invert	at least one step attempted, or reasonable attempt at flow chart inversion
$\Rightarrow y = \frac{1}{3} \arcsin\left[\frac{x-1}{2}\right]$	so $f^{-1}(x) = \frac{1}{3} \arcsin\left[\frac{x-1}{2}\right]$ A1	must be $y =$ or $f^{-1}(x) =$	(or any other variable provided same used on each side)
Range of f is $-1 \le x \le 3$	-1 to 3 M1 A1 [6]	or $-1 \le (x-1)/2 \le 1$ must be 'x', not y or f(x)	condone <'s for M1 allow unsupported correct answers; -1 to 3 is M1 A0

7 Either $y = \frac{1}{2}\ln(x-1)$ $x \leftrightarrow y$		or $y = e^{(x-1)/2}$
$\Rightarrow \qquad x = \frac{1}{2}\ln(y-1)$	M1	attempt to invert and interchanging <i>x</i> with <i>y</i> o.e. (at any stage)
$\Rightarrow 2x = \ln(y-1)$	M1	$e^{\ln y - 1} = y - 1$ or $\ln (e^y) = y$ used
$ \Rightarrow e^{2x} = y - 1 \Rightarrow 1 + e^{2x} = y $	E1	www
\Rightarrow g(x) = 1 + e ^{2x}		
or $gf(x) = g(\frac{1}{2} ln(x-1))$ = 1 + e ^{ln(x-1)}	M1	or $fg(x) = \dots$ (correct way round)
= 1 + x - 1	M1	$e^{\ln(x-1)} = x - 1$ or $\ln(e^{2x}) = 2x$
= x	E1 [3]	www

